
Containers 3
Summary: A container is an object that is used to manage other objects which in this
context are called elements of the container. It deals with allocation and deallocation
of memory and controls insertion and deletion of elements. The algorithms that work
with containers rely on a defined interface of data types and methods which must also
be adhered to by user-defined containers if proper functioning of the algorithms is
to be guaranteed. The containers vector, list, and deque are described, together
with their properties. At the end of the chapter, the peculiarities of cooperation be-
tween iterators and containers are discussed.

In part, the STL containers are typical implicit data types in the sense of Section 1.2.
They include vector, list, and deque. Other containers, in contrast, are abstract
data types which are implemented by means of the implicit data types. These include
stack, queue, and priority_queue.

Further abstract data types are set, map, multiset, and multimap. They are
implemented by means of so-called red-black trees (Cormen et al. (1994)). All ab-
stract data types which do not themselves represent implicit data types can easily be
recognized from the fact that they use appropriate implicit data types. Abstract data
types are described separately in Chapter 4.

Before the individual types of container are introduced, the data types and
methods common to all containers will be discussed.

3.1 Data type interface
Each container provides a public set of data types that can be used in a program. The
data type vector<int>::iterator has already been mentioned on page 9. It can
be identical to a pointer type such as int*, but this is not compulsory.

The aim of data types is to ensure that the interface to a container in a program
is unique at compile time. This means that, for example, you can design a several
megabytes size vector which is not kept in memory, but is kept as a file on hard disk.
Even in this case, you could still use vector<int>::iterator as the data type
without any danger, but this data type would then be anything but an int pointer.
The actual implementation of vector element access remains hidden to the user of
the container.

46 CONTAINERS

Table 3.1 shows the container data types required for user-defined containers
and already provided by the containers of the STL. Let X be the data type of the
container, for example vector<int>, and T be the data type of a container element,
for example int. Thus, the type vector<int>::value_type is identical to int.

Data type Meaning
X::value_type T

X::reference reference to container element
X::const_reference ditto for read-only purposes
X::iterator type of iterator
X::const_iterator ditto, but cannot be used to modify an element
X::difference_type signed integral type (see distance type, page 32)
X::size_type unsigned integral type for size specifications

Table 3.1: Container data types.

3.2 Container methods
Each container provides a public set of methods which can be used in a program.
The methods begin() and end() have already been mentioned and used (pages 5
and 8). Table 3.2 shows the container methods required for user-defined containers
and already provided by the STL containers. X is the denomination of the container
type.

An example of the swap() method can be found on page 51. The maximum pos-
sible size of a container, determined with max_size(), depends among other things
on the memory model (only for MS-DOS). A vector<int> with a 16-bit size_t
can contain at most 32 767 elements. The current size, returned by the size() func-
tion, results from the distance between beginning and end, as calculated by the func-
tion distance(a.begin(), a.end(), n) described on page 32.

In addition to the above-mentioned methods, there are the relational operators
==, !=, <, >, <=, and >=. The first two, == and !=, are based on comparison of
container size and comparison of elements of type T, for which operator==()

must be defined. The remaining four are based on a lexicographic comparison of the
elements, for which operator<() must be defined as order relation. The relational
operators are defined in namespace std and make use of the algorithms equal()
and lexicographical_compare() which will be discussed later.

3.2.1 Reversible containers
Reversible containers allow iterators to traverse backward. Such iterators may be
bidirectional and random access. For these kinds of container, the additional data
types

SEQUENCES 47

Return type method Meaning
X() default constructor; creates empty con-

tainer
X(const X&) copy constructor
~X() destructor; calls the destructors for all ele-

ments of the container
iterator begin() beginning of the container
const_iterator begin() beginning of the container
iterator end() position after the last element
const_iterator end() ditto
size_type max_size() maximum possible container size (see text)
size_type size() current size of the container (see text)
bool empty() size() == 0 or begin() == end()

void swap(X&) swapping with argument container
X& operator=(const X&) assignment operator
bool operator==(const X&) operator ==
bool operator!=(const X&) operator !=
bool operator<(const X&) operator <
bool operator>(const X&) operator >
bool operator<=(const X&) operator <=
bool operator>=(const X&) operator >=

Table 3.2: Container methods.

X::reverse_iterator

X::const_reverse_iterator

and the methods

rbegin() // points to last element
rend() // points to fictitious position before the first element

are provided which return a reverse iterator.

3.3 Sequences
A sequence is a container whose elements are arranged in a strictly linear way. Table
3.3 shows the methods which must be present for sequences in addition to those of
Table 3.2 and which therefore exist in the STL.

Notation for intervals
It is frequently necessary to specify intervals. For this purpose, the usual mathemati-
cal interval is used, where square brackets denote intervals including the boundary
values, and round parentheses denote intervals excluding the boundary values. Thus,
[i, j) is an interval including i and excluding j. In Table 3.3, X is the type of a

48 CONTAINERS

sequential container; i and j are of input iterator type; p and q are dereferenceable
iterators; n is of type X::size_type and t is an element of type X::value_type.

Return type method Meaning
X(n, t) Creates a sequence of type X with n copies of

t.

X(i, j) Creates a sequence with the elements of the
range [i, j) copied into the sequence.

iterator insert(p, t) Copies a copy of t before the location p. The
return value points to the inserted copy.

void insert(p, n, t) Copies n copies of t before the location p.

void insert(p, i, j) Copies the elements of the range [i, j) be-
fore the location p. i, j refer to another con-
tainer than that for which insert() is called.

iterator erase(q) Deletes the element pointed to by q. The re-
turned iterator points to the element immedi-
ately following q prior to the deletion opera-
tion, provided it exists. Otherwise, end() is
returned.

iterator erase(q1, q2) Deletes the elements of the range [q1, q2).
The returned iterator points to the element that
pointed to q2 immediately prior to the deletion
operation, provided it exists. Otherwise, end()
is returned.

void clear() Deletes all elements; corresponds to
erase(begin(), end()).

Table 3.3: Additional methods for sequences.

The STL contains three kinds of sequential containers, namely vector, list,
and deque. A list (list) should be used when frequent insertions and deletions are
needed somewhere in the middle. A queue with two ends (deque = double ended
queue) is reasonable when insertion and deletion frequently take place at either end.
vector corresponds to an array. deque and vector allow random access to ele-
ments.

The above-mentioned operations together with their containers need only con-
stant time. Other operations, however, such as insertion of an element into the middle
of a vector or a queue, are more expensive; the average cost increases linearly with
the number of already existing elements.

The sequential containers vector, list, and deque provided by the STL offer
several other methods, listed later in Table 3.5. The methods take constant time. In
addition, there are the operators:

SEQUENCES 49

template<class T>

bool std::operator==(const Container<T>& x,

const Container<T>& y);

template<class T>

bool std::operator<(const Container<T>& x,

const Container<T>& y);

for comparison, where Container can be one of the types vector, list or deque.
In addition to the data types of Table 3.1, the types of Table 3.4 are provided.

Data type Meaning
X::pointer pointer to container element
X::const_pointer ditto, but cannot be used to modify container elements

Table 3.4: Additional data types for vector, list, and deque.

3.3.1 Vector
Now that all essential properties of a vector container have been described, let us
look at some examples of its application. First, a vector with 10 places is filled with
the numbers 0 to 9. At the end, the number 100 is appended, which automatically
increases the container size. Subsequently, the vector is displayed in two ways: the
first loop uses it as a common array; the second loop uses an iterator.

// k3/vector/intvec.cpp
// example for int vector container
#include<vector>

#include<iostream>

using namespace std;

int main() {

// an int vector of 10 elements
vector<int> intV(10);

for(size_t i = 0; i < intV.size(); ++i)

intV[i] = i; // fill vector, random access

// vector increases on demand
intV.insert(intV.end(), 100); // append the number 100

// use as array
for(size_t i = 0; i < intV.size(); ++i)

cout << intV[i] << endl;

// use with an iterator
for(vector<int>::iterator I = intV.begin();

I != intV.end(); ++I)

cout << *I << endl;

50 CONTAINERS

Return type method Meaning
void assign(n, t = T()) Deletes the container elements

and subsequently inserts n ele-
ments t.

void assign(i, j) Deletes the container elements
and subsequently inserts the ele-
ments of the iterator range [i,

j).

reference front() Supplies a reference to the first el-
ement of a container.

const_reference front() Ditto, but cannot be used to mod-
ify container elements.

reference back() Supplies a reference to the last el-
ement of a container.

const_reference back() Ditto, but cannot be used to mod-
ify container elements.

void push_back(t) Inserts t at the end.

void pop_back() Deletes the last element.

void resize(n, t = T()) Changes the container size. n -

size() elements t are inserted at
the end or size()-n elements are
deleted at the end, depending on
whether n is greater or less than
the current size.

reverse_iterator rbegin() Returns the begin iterator for
backward traversal. This iterator
points to the last element.

const_reverse_iterator rbegin() Ditto, but cannot be used to mod-
ify container elements.

reverse_iterator rend() Returns the end iterator for back-
ward traversal.

const_reverse_iterator rend() Ditto, but cannot be used to mod-
ify container elements.

Table 3.5: Additional methods for vector, list, and deque.

vector<int> newV(20); // all elements are 0
cout << " newV = ";

for(size_t i = 0; i < newV.size(); ++i)

cout << newV[i] << ’ ’;

SEQUENCES 51

//swap() from Table 3.2 shows a very fast method for
// swapping two vectors.
newV.swap(intV);

cout << "\n newV after swapping = ";

for(size_t i = 0; i < newV.size(); ++i)

cout << newV[i] << ’ ’; // old contents of intV

cout << "\n\n intV = ";

for(size_t i = 0; i < intV.size(); ++i)

cout << intV[i] << ’ ’; // old contents of newV
cout << endl;

}

In the next example, the stored elements are of string type. In addition, it shows
how an element is deleted which leads to a change in the number of elements. All
elements following the deleted element shift by one position. This process is a time-
consuming operation. Finally, a reverse_iterator is used which traverses the
container backward.

// k3/vector/strvec.cpp
// example for string vector container
#include<vector>

#include<iostream>

#include<string>

using namespace std;

int main() {

// a string vector of 4 elements
vector<string> stringVec(4);

stringVec[0] = "First";

stringVec[1] = "Second";

stringVec[2] = "Third";

stringVec[3] = "Fourth";

// vector increases size on demand
stringVec.insert(stringVec.end(), string("Last"));

cout << "size() = "

<< stringVec.size() << endl; // 5

// delete the element ‘Second’
vector<string>::iterator I = stringVec.begin();

++I; // 2nd position
cout << "erase: "

<< *I << endl;

stringVec.erase(I); // delete Second
cout << "size() = "

<< stringVec.size() << endl; // 4

52 CONTAINERS

for(I = stringVec.begin(); I != stringVec.end(); ++I)

cout << *I << endl;

/* Output: First
Third
Fourth
Last

*/

cout << "backwards with reverse_iterator:" << endl;

for(vector<string>::reverse_iterator

revI = stringVec.rbegin(); revI != stringVec.rend();

++revI)

cout << *revI << endl;

} // main.cpp

On average, deletion or insertion of an element at the end of a vector takes con-
stant time, that is O(1) in complexity notation (for example, pop_back()). Insertion
or deletion of an element somewhere in the middle takes a time proportional to the
number of elements that have to be shifted, thus, O(n) for n vector elements.

It should be noted that iterators previously pointing to elements of the vector
become invalid when the elements in question are shifted by the insertion or deletion.
This also applies when the available space of the vector becomes insufficient for
insert() and new space is allocated. The reason for this is that after allocation of
new, larger memory space all elements are copied into the new space and therefore
all old positions are no longer valid.

In addition to the methods of Tables 3.2 to 3.5, vector provides the methods of
Table 3.6.

3.3.2 List
This example refers to the program on page 41 for the determination of identifiers
contained in a file. It makes use of the Identifier class described there, with
the difference that the identifiers are not written into a file, but into a list which is
subsequently displayed:

// k3/list/identify/main.cpp
#include<iterator>

#include<fstream>

#include<list>

#include"identif.h"

int main() {

// define and open input file
std::ifstream Source("main.cpp");

std::list<Identifier> Identifier_list;

std::istream_iterator<Identifier> iPos(Source), end;

SEQUENCES 53

Return type method Meaning
reference operator[](n) Returns a reference to the nth element

(usage: a[n], when a is the container).

const_reference operator[](n) Ditto, but cannot be used to modify
container elements.

reference at(n) Checks if n is within the valid range.
If yes, a reference to the nth element
is returned, otherwise an exception is
thrown.

const_reference at(n) Ditto, but cannot be used to modify
container elements.

void reserve(n) Reserves memory space, so that the
available space (capacity) exceeds the
currently needed space. Aim: avoid-
ing memory allocation operation dur-
ing vector use.

size_type capacity() Returns the capacity value (see
reserve()). size() is always less
than or equal to capacity().

Table 3.6: Additional vector methods.

if(iPos == end)

std::cout << "File not found!" << std::endl;

else

while(iPos != end)

// insert identifier and read next one
Identifier_list.push_back(*iPos++);

// output
std::list<Identifier>::const_iterator

I = Identifier_list.begin();

while(I != Identifier_list.end())

std::cout << *I++ << std::endl;

}

The structure of the main() programs resembles the one on page 43. This re-
semblance facilitates learning how to use iterators and containers. In contrast to the
vector, insert() and erase() do not invalidate iterators that point to elements of
the list, with the exception of an iterator that points to an element to be deleted.

In addition to the methods of Tables 3.2 to 3.5, list provides the methods of
Table 3.7. Each operation takes constant time (O(1)) if not otherwise specified. The
predicates mentioned in the table are simply function objects (description on page
21). They determine whether a statement about an element is true or false.

54 CONTAINERS

One could, for example, imagine a function object P for Identifier objects
which returns whether the identifier begins with an upper case letter. remove_if(P)
would then delete all elements of the list that have an upper case initial.

For two of the methods of Table 3.7, namely merge() and splice(), sample
applications are shown.

Merging of sorted lists
Two small sorted lists are to be merged into one big sorted list. After the end of
the process, the calling list contains all elements of the two lists, whereas the called
list is empty. merge() is stable; thus, the relative order of the elements of a list is
maintained.

// k3/list/merge.cpp
#include<list>

#include<iostream>

// auxiliary function
void displayIntList(const std::list<int> & L) {

std::list<int>::const_iterator I = L.begin();

while(I != L.end())

std::cout << *I++ << ’ ’;

std::cout << " size() ="

<< L.size() << std::endl;

}

int main() {

std::list<int> L1, L2;

// fill lists with sorted numbers
for(int i = 0; i < 10; ++i) {

L1.push_back(2*i); // even numbers
L2.push_back(2*i+1); // odd numbers

}

displayIntList(L1); // 0 2 4 6 8 10 12 14 16 18 size() =10
displayIntList(L2); // 1 3 5 7 9 11 13 15 17 19 size() =10

L1.merge(L2); // merge

displayIntList(L1);

// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 size() =20
displayIntList(L2); // size() =0

}

The example first outputs a list of even numbers and a list of odd numbers. Af-
ter the merge() operation, the first list contains all the numbers; the second list is
empty.

SEQUENCES 55

Return type method Meaning
void merge(list&) Merges two sorted lists (time complexity

O(n)).

void merge(list&,
Compare_object)

Merges two sorted lists, using a
Compare_object for the comparison
of elements (O(n)).

void push_front(const
T& t)

Inserts an element at the beginning.

void pop_front() Deletes the first element.

void remove(const T& t) Removes all elements that are equal to the
passed element t (O(n)).

void remove_if(
Predicate P)

Removes all elements to which the predicate
applies (O(n)).

void reverse() Reverses the order of elements in the list
(O(n)).

void sort() Sorts the elements in the list. Time complexity
is O(n log n). The sorting criterion is the <

operator defined for the elements.

void sort(
Compare_object)

as sort(), but with the sorting criterion of
the Comparison object (see page 22).

void splice(iterator
pos, list& x)

Inserts the contents of list x before pos. Af-
terwards, x is empty.

void splice(iterator p,
list&x, iterator i)

Inserts element *i of x before p and removes
*i from x.

void splice(iterator
pos, list& x, iterator
first, iterator last)

Inserts elements in the range [first,

last) of x before pos and removes them
from x. Calling the same object (that is, &x
== this), takes constant time, otherwise, the
cost is of the order O(n). pos must not lie in
the range [first, last).

void unique() Deletes identical consecutive elements except
for the first one (cost O(n)). Application to a
sorted list leads to the effect that no element
occurs more than once.

void unique(

binaryPredicate)

Ditto, only that instead of the identity cri-
terion another binary predicate is used.

Table 3.7: Additional methods for lists.

56 CONTAINERS

Splicing of lists
The term ‘splicing’ originates from the nautical cabling technique and denotes the
fastening together or uniting of several ropes by tucking several strands of rope or
cable into each other. Here, we talk about uniting lists. Of the possibilities listed in
Table 3.7, we only look at how to transfer a section of a list into another list. From
the previous example, only the line containing the merge() operation is substituted
with the following program fragment:

list<int>::iterator I = L2.begin();

advance(I, 4); // 4 steps
L1.splice(L1.begin(), L2, I, L2.end());

State of the lists before splice():
L1: 0 2 4 6 8 10 12 14 16 18
L2: 1 3 5 7 9 11 13 15 17 19

State of the lists after splice():
L1: 9 11 13 15 17 19 0 2 4 6 8 10 12 14 16 18
L2: 1 3 5 7

All elements of list L2 from position 4 (counting starts with 0) onward up to
the end of the list are transferred to the beginning of list L1. Afterwards, list L2
contains only the first four elements, whereas list L1 has grown by six elements at
the beginning.

3.3.3 Deque
Deque is an abbreviation for double ended queue. Like a vector, this sequence allows
random access iterators and, exactly like a list, it allows insertion and deletion at the
beginning or the end in constant time. Insertions and deletions somewhere in the
middle, however, are quite costly (O(n)), because many elements must be shifted.
A deque might be seen as being internally organized as an arrangement of several
memory blocks, where memory management is hidden in a similar way to vector.
During insertion at the beginning or the end, a new block of memory is added when-
ever available space is no longer sufficient. In addition to the methods of Tables 3.2
to 3.5, deque provides the methods of Table 3.8.

3.3.4 showSequence
A remark to start with: showSequence() is not an algorithm of the STL, but a
sequence display tool written for the examples in this book. The function is defined:

// Template for the display of sequences (file include/showseq.h)
#ifndef SHOWSEQ_H

#define SHOWSEQ_H

#include<iostream>

SEQUENCES 57

Return type method Meaning
reference operator[](n) Returns a reference to the nth element

(usage: a[n], when a is the container).

const_reference
operator[](n)

Ditto, but cannot be used to modify con-
tainer elements.

reference at(n) Returns a reference to the nth element,
if n is within the valid range. Otherwise
an exception is thrown.

const_reference at(n) Ditto, but cannot be used to modify con-
tainer elements.

void push_front(const T& t) Inserts an element at the beginning.

void pop_front() Deletes the first element.

Table 3.8: Additional deque methods.

namespace br_stl {

template<class Container>

void showSequence(const Container& s, const char* sep = " ",

std::ostream& where = std::cout) {

typename Container::const_iterator iter = s.begin();

while(iter != s.end())

where << *iter++ << sep;

where << std::endl;

}

}

#endif

If nothing different is specified, output is written to cout. The sequence is output
completely, that is, from begin() to (but excluding) end(). The sep character
string separates the individual elements. It defaults to a space if nothing else is speci-
fied in the function call. With these definitions, you can simply write

br_stl::showSequence(v);

in your program to display an int vector v, instead of

std::vector<int>::const_iterator iter = v.begin();

while(iter != v.end()) std::cout << *iter++ << " ";

std::cout << std::endl;

The function is neither designed for nor suited to simple C arrays. Its advan-
tage is that because of the shorter notation, programs become more readable. The
function template is read into memory with #include<showseq.h>. Inclusion of
#include<iostream> is done by showseq.h and is therefore no longer needed in
programs using showSequence().

58 CONTAINERS

3.4 Iterator categories and containers
In this section, the different iterator categories which are associated to the containers
are evaluated, for example in order to select the most effective algorithm possible at
compile time. The following example shows how at compile time the correct func-
tion for the display of the iterator type is selected from a set of overloaded functions:

// k3/iterator/ityp.cpp determination of the iterator type
#include<string>

#include<fstream>

#include<vector>

#include<iterator>

#include<iostream>

using namespace std;

// template for getting the type (iterator-tag) of an iterator
template<class Iterator>

typename iterator_traits<Iterator>::iterator_category

get_iteratortype(const Iterator&) {

typename iterator_traits<Iterator>::iterator_category typeobject;

return typeobject;

}

// overloaded functions
void whichIterator(const input_iterator_tag&) {

cout << "Input iterator!" << endl;

}

void whichIterator(const output_iterator_tag&) {

cout << "Output iterator!" << endl;

}

void whichIterator(const forward_iterator_tag&) {

cout << "Forward iterator!" << endl;

}

void whichIterator(const random_access_iterator_tag&) {

cout << "Random access iterator!" << endl;

}

// application
int main() {

// In case of basic data types we have to use the iterator_traits template
int *ip; // random access iterator
// display of iterator type
whichIterator(get_iteratortype(ip));

whichIterator(

iterator_traits<int*>::iterator_category());

ITERATOR CATEGORIES AND CONTAINERS 59

// define a file object for reading
// (actual file is not required here)
ifstream Source;

// an istream_iterator is an input iterator
istream_iterator<string> IPos(Source);

// display of iterator type
whichIterator(get_iteratortype(IPos)); // or alternatively:
whichIterator(iterator_traits<istream_iterator<string> >

::iterator_category());

// define a file object for writing
ofstream Destination;

// an ostream_iterator is an output iterator
ostream_iterator<string> OPos(Destination);

// display of iterator type
whichIterator(get_iteratortype(OPos)); // or alternatively:
whichIterator(iterator_traits<ostream_iterator<string> >

::iterator_category());

vector<int> v(10);

// display of iterator type
whichIterator(get_iteratortype(v.begin()));

// or some other iterator
whichIterator(iterator_traits<vector<int>::iterator>

::iterator_category());

}

A further example shows how to write an overloaded function whose selected
implementation depends on the iterator type. The task is to output the last n elements
of a container by means of the function showLastElements(). It is assumed that
at least bidirectional iterators can work on the container. Thus, it is sufficient to equip
the function with an iterator to the end of the container and the required number.

// k3/iterator/iappl.cpp
#include<iostream>

#include<list>

#include<vector>

#include<iterator>

// calling implementation
template<class Iterator>

void showLastElements(Iterator last,

typename std::iterator_traits<Iterator>::difference_type

n) {

typename std::iterator_traits<Iterator>::iterator_category

typeobject;

60 CONTAINERS

showLastElements(last, n, typeobject);

}

/*This function now calls the corresponding overloaded variation, where the selection at
compile time is carried out by the parameter iterator_category() whose type
corresponds to an iterator tag. Therefore, the third parameter is an iterator tag object
constructed by calling its default constructor.

*/

// first overloaded function
template<class Iterator, class Distance>

void showLastElements(Iterator last, Distance n,

std::bidirectional_iterator_tag) {

Iterator temp = last;

std::advance(temp, -n);

while(temp != last) {

std::cout << *temp << ’ ’;

++temp;

}

std::cout << std::endl;

}

/*The bidirectional iterator does not allow random access and therefore no iterator arith-
metic. Only the operators ++ and -- are allowed for moving. Therefore, advance()
is used to go back n steps and then display the remaining elements. A random access
iterator allows arithmetic, which makes the implementation of this case slightly easier:

*/

// second overloaded function
template<class Iterator, class Distance>

void showLastElements(Iterator last, Distance n,

std::random_access_iterator_tag) {

Iterator first = last - n; // arithmetic
while(first != last)

std::cout << *first++ << ’ ’;

std::cout << std::endl;

}

// main-program
int main() {

std::list<int> L; // list
for(int i=0; i < 10; ++i) L.push_back(i);

// call of 1st implementation
showLastElements(L.end(), 5L); // 5 long

std::vector<int> v(10); // vector
for(int i = 0; i < 10; ++i) v[i] = i;

ITERATOR CATEGORIES AND CONTAINERS 61

// call of 2nd implementation
showLastElements(v.end(), 5); // 5 int

}

This scheme – providing a function as an interface which then calls one of the
overloaded functions with the implementation – allows you to use completely dif-
ferent implementations with one and the same function call. This allows you, in a
properly designed program, to change a container type without having to modify the
rest of the program.

3.4.1 Derivation of value and distance types
The STL is based on the fact that algorithms use iterators to work with containers.
However, this also means that inside an algorithm the container and its properties
are not known, and that all the required information must be contained in the itera-
tors. The information are determined by means of the iterator traits classes. A short
example follows to show how an algorithm is chosen dependent on the iterator type,
and how to derive and use value and distance types. Let us assume two different
containers, a list and a vector, in which the element order is to be reversed. Only
iterators to the beginning and the end of the corresponding containers are passed to
the function named reverseIt() (to avoid a conflict with std::reverse()).
// k3/iterator/valdist.cpp
// Determination of value and distance types
#include<showseq.h>

#include<list>

#include<vector>

#include<iterator>

template<class BidirectionalIterator>

void reverseIt(BidirectionalIterator first,

BidirectionalIterator last) {

typename std::iterator_traits<BidirectionalIterator>

::iterator_category typeobject;

reverseIt(first, last, typeobject);

}

/*Reversing the order means that one element must be intermediately stored. For this, its
type must be known. Following the well-proven scheme, the function calls the suitable
implementation for the iterator type:

*/

template<class BidirectionalIterator>

void reverseIt(BidirectionalIterator first,

BidirectionalIterator last,

std::bidirectional_iterator_tag) {

// Use of the difference type to calculate the number of exchanges. The
// difference type is derived from the iterator type:

62 CONTAINERS

typename std::iterator_traits<

BidirectionalIterator>::difference_type

n = std::distance(first, last) -1;

while(n > 0) {

// The value type is also derived from the iterator type:
typename std::iterator_traits<BidirectionalIterator>

::value_type temp = *first;

*first++ = *--last;

*last = temp;

n -= 2;

}

}

/*The second implementation uses arithmetic to compute the distance, which much faster,
but is possible only with random access iterators:

*/

template<class RandomAccessIterator>

void reverseIt(RandomAccessIterator first,

RandomAccessIterator last,

std::random_access_iterator_tag) {

/*Use of the difference type to calculate the number of exchanges. The difference
type is derived from the iterator type:

*/
typename std::iterator_traits<RandomAccessIterator>

::difference_type n = last -first -1; // arithmetic!

while(n > 0) {

// The value type is also derived from the iterator type:
typename std::iterator_traits<RandomAccessIterator>

::value_type temp = *first;

*first++ = *--last;

*last = temp;

n -= 2;

}

}

/*At first sight, one could think that the algorithm could do without the distance type when
comparing iterators and stop when first becomes >= last. However, this assump-
tion only holds when a > relation is defined for the iterator type at all. For a vector, where
two pointers point to a continuous memory area, this is no problem. It is, however, im-
possible for containers of a different kind, such as lists or binary trees.

*/

int main() {

std::list<int> L;

for(int i=0; i < 10; ++i) L.push_back(i);

ITERATORS FOR INSERTION INTO CONTAINERS 63

reverseIt(L.begin(), L.end());

br_stl::showSequence(L);

std::vector<double> V(10);

for(int i = 0; i < 10; ++i) V[i] = i/10.;

reverseIt(V.begin(), V.end());

br_stl::showSequence(V);

}

3.4.2 Inheriting iterator properties
When user-defined iterators are built, they should conform to those of the STL. A
bidirectional iterator can be written as follows:
// user-defined bidirectional iterator using int as value type
class MyIterator

: public std::iterator<

std::bidirectional_iterator_tag, int> {

// program code for operator++(), and so on
}

Here int may be substituted by a suitable value type, if needed. There can be up to
five template parameters: 1. iterator type, 2. value type, 3. distance type, 4. pointer
type, 5. reference type. The last three are optional.

3.5 Iterators for insertion into containers
The idiom shown on page 43

while(first != last) *result++ = *first++;

copies an input range into an output range, where oPos and iPos in Section 2.2.2
represent output and input iterators for streams. An output stream normally has more
than sufficient space for all copied elements. The same idiomatic notation can also
be used for the copying of containers; the previous contents of the target container
are overwritten:

container Source(100), Target(100);

// fill Source with values here

typename container::iterator first = Source.begin(),

last = Source.end(),

result = Target.begin();

// copying of the elements
while(first != last) *result++ = *first++;

There can, however, be a problem: this scheme fails when the Target container
is smaller than the Source container, because at some time result will no longer

64 CONTAINERS

be defined. Perhaps the old contents of Target should not be overwritten, but should
remain intact and the new contents should just be added.

For these purposes, predefined iterators exist which allow insertion. Insert itera-
tors are output iterators.

The insert iterators provide the operators operator*() and operator++() in
both prefix and postfix version, together with operator=(). All operators return a
reference to the iterator. The first two have no other function. They exist only for
keeping the usual notation *result++ = *last++:

// Implementation of some operators (excerpt)
template <class Container>

class insert_iterator

: public iterator<output_iterator_tag,

typename Container::value_type,

typename Container::difference_type> {

public:

insert_iterator<Container>& operator*() {return *this;}

insert_iterator<Container>& operator++() {return *this;}

insert_iterator<Container>& operator++(int)

{ return *this;}

// ... and so on
};

Only the assignment operator calls a member function of the container, which is
dependent on the kind of container. Now, let us look at the expression *result++

= *last++ in detail, remembering that the order of evaluation is from right to left,
because unary operators are right-associative. *last is the value to be inserted. The
call of the first two operators yields a reference to the iterator itself, so that result
can be substituted successively:

result.operator++(int)︸ ︷︷ ︸.operator*().operator=(*last++);

result.operator*()︸ ︷︷ ︸.operator=(*last++);

result.operator=(*last++);

The compiler optimizes the first two calls, so that the task of insertion only re-
mains with the assignment operator. The three different predefined insert iterators
described in the next sections differ exactly on this point.

back_insert_iterator
A back insert iterator inserts new elements into a container at the end, making use
of the element function push_back() of the container, called by the assignment
operator:

// Implementation of an assignment operator
back_insert_iterator<Container>& operator=(

typename Container::const_reference value) {

// c points to the container (private pointer attribute of the iterator)

ITERATORS FOR INSERTION INTO CONTAINERS 65

c->push_back(value);

return *this;

}

The following example shows the application of a back insert iterator in which
the numbers 1 and 2 are appended to a vector:

// k3/iterator/binsert.cpp
// Insert iterators : back insert
#include<showseq.h>

#include<vector>

#include<iterator>

int main() {

std::vector<int> aVector(5); // 5 zeros
std::cout << "aVector.size() = "

<< aVector.size() << std::endl; // 5
br_stl::showSequence(aVector); // 0 0 0 0 0

std::back_insert_iterator<std::vector<int> >

aBackInserter(aVector);

// insertion by means of the operations *, ++, =
int i = 1;

while(i < 3)

*aBackInserter++ = i++;

std::cout << "aVector.size() = "

<< aVector.size() << std::endl; // 7

br_stl::showSequence(aVector); // 0 0 0 0 0 1 2
}

The predefined function back_inserter() returns a back insert iterator and
facilitates passing iterators to functions. Let us assume a function copyadd() which
copies the contents of one container into another or adds it when the iterator used is
an insert iterator:

template <class InputIterator, class OutputIterator>

OutputIterator copyadd(InputIterator first,

InputIterator last,

OutputIterator result) {

while (first != last)

*result++ = *first++;

return result;

}

The above program can be integrated with the following lines in which this func-
tion is passed the iterator created with back_inserter():

// copying with function back_inserter()
std::vector<int> aVector2; // size is 0

66 CONTAINERS

copyadd(aVector.begin(), aVector.end(),

back_inserter(aVector2));

std::cout << "new: aVector2.size() = "

<< aVector2.size() << std::endl;

br_stl::showSequence(aVector2);

front_insert_iterator
A front insert iterator inserts new elements into a container at the beginning, mak-
ing use of the member function push_front() of the container, called by the
assignment operator. Thus, it is very similar to the back insert iterator. In the follow-
ing example, list is used instead of vector, because push_front is not defined
for vectors.

// k3/iterator/finsert.cpp
// Insert iterators: front inserter
#include<showseq.h>

#include<list>

#include<iterator>

int main() {

std::list<int> aList(5); // 5 zeros

std::cout << "aList.size() = "

<< aList.size() << std::endl; // 5

br_stl::showSequence(aList); // 0 0 0 0 0

std::front_insert_iterator<std::list<int> >

aFrontInserter(aList);

// insertion by means of the operations *, ++, =
int i = 1;

while(i < 3)

*aFrontInserter++ = i++;

std::cout << "aList.size() = "

<< aList.size() << std::endl; // 7

br_stl::showSequence(aList); // 2 1 0 0 0 0 0
}

The copyadd()- example at the end of the section back_insert_iterator

works in a similar way with the function std::front_inserter() (see example
k3/iterator/finserter.cpp).

insert_iterator
Now, something may have to be inserted not just at the beginning or at the end, but
at an arbitrary position in the container. The insert iterator has been designed for this
purpose. Since it can also insert at the beginning and at the end, it can also be used

ITERATORS FOR INSERTION INTO CONTAINERS 67

instead of the back and front insert iterators already described. It must be passed
the insertion point. For this purpose, the insert iterator uses the member function
insert() of the container, called by the assignment operator, whose implementa-
tion is shown here:

// Possible implementation of the assignment operator
insert_iterator<Container>& operator=(

typename const Container::value_type& value) {

// iter is a private variable of the insert_iterator object
iter = theContainer.insert(iter, value);

++iter;

return *this;

}

The private variable theContainer is a reference to the container, which is
passed to the constructor together with the insertion position, as shown in the fol-
lowing example. The insertion position is stored in the private variable iter.

// k3/iterator/insert.cpp
// Insert iterator
#include<showseq>

#include<vector>

#include<iterator>

int main() {

std::vector<int> aVector(5); // 5 zeros

std::cout << "aVector.size() = "

<< aVector.size() << std::endl; // 5
br_stl::showSequence(aVector); // 0 0 0 0 0

// insertion by means of the operations *, ++, =
std::insert_iterator<std::vector<int> >

aBeginInserter(aVector, aVector.begin());

int i = 1;

while(i < 3) *aBeginInserter++ = i++;

// vector: 1 2 0 0 0 0 0, size() is now 7
/*In contrast to the front_insert_iterator, the insert-position remains the

same, i.e. after inserting an element the position is not the beginning of the vector!
*/
std::insert_iterator<vector<int> >

aMiddleInserter(aVector, aVector.begin() +

aVector.size()/2);

while(i < 6) *aMiddleInserter++ = i++;

// vector: 1 2 0 3 4 5 0 0 0 0, size() is now 10

std::insert_iterator<vector<int> >

68 CONTAINERS

anEndInserter(aVector, aVector.end());

while(i < 9) *anEndInserter++ = i++;

std::cout << "aVector.size() = "

<< aVector.size() << std::endl; // 13
br_stl::showSequence(aVector); // 1 2 0 3 4 5 0 0 0 0 6 7 8

}

Here, the insert iterator is used to insert elements at the beginning, in the middle,
and at the end. It should be noted that an insert iterator invalidates references to thetip
container when, for reasons of space, the container is moved to a different memory
location! Applied to the above example, this means that the definitions of the insert
iterators cannot be concentrated at the top shortly after main() at one point: the
begin() and end() iterators and the size size() would be invalid for the second
and third iterators immediately after execution of the first one.

The copyadd()-example at the end of the section back_insert_iterator

also works in a similar way with the function std::inserter(c,p). p is an itera-
tor into container c.

